
D.R. 858834—JSV 217/3 (Issue)————MS 2670

Journal of Sound and Vibration (1998) 217(3), 523–545
Article No. sv981764

A CRITICAL STUDY OF THE USE OF THE
GENERALIZED IMPULSE–MOMENTUM

BALANCE EQUATIONS IN FLEXIBLE
MULTIBODY SYSTEMS

J. L. E, J. M. M  J. D́

Department of Mechanical Engineering, University of Seville,
Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

(Received 5 February 1998, and in final form 26 May 1998)

This paper analyses some aspects of the application of the generalized
impulse–momentum balance equations to flexible multibody systems. These
equations are the result of extending impulsive dynamics to the collision of flexible
and constrained bodies. Application of the generalized impulse–momentum
balance provides a system of algebraic equations that is solved for the velocity
jumps and the impulses associated with the contact force and the reactions
involved. As shown in this paper, the physical significance of the coefficient of
restitution, which is included in the formulation to account for energy losses, can
be misinterpreted. The floating frame of reference approach was used in
combination with the finite element technique to describe flexibility and component
mode synthesis to reduce the number of flexible co-ordinates in the collision
problem studied. The number of elastic co-ordinates used to describe flexibility
and the time step used in the numerical integration essentially influence the
dynamic simulation of the impact process. The underlying message of this research
is that the collision simulation entails solving many different balances. However,
as shown in this paper, this is not the result of the real phenomenon of succession
of impacts. These facts are illustrated with some numerical simulations of impacts
of rigid bodies on flexible elements.
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1. INTRODUCTION

The generalized impulse–momentum balance equations are the result of applying
impulsive dynamics to the collision of flexible bodies in multibody systems. The
floating frame of reference approach, jointly with the impulse–momentum balance
equations, was applied to rigid body multibody systems by Wehage and Haug [1].
Khulief and Shabana [2] developed the algebraic equation system for multibody
systems including rigid and flexible bodies. Flexibility was considered via the finite
element method and the component mode synthesis technique was used to reduce
the number of flexible co-ordinates. The system was applied to impact on the slider
of a slider-crank mechanism, which was assumed to be rigid. Yigit et al. [3, 4] used
the momentum–balance equations to analyse the impact of a flexible radially
rotating beam on a fixed stop. Flexibility was analysed through a continuous
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media approach. The dependence of the coefficient of restitution on the system
properties was examined and the numerical results obtained were consistent with
experimental data. Palas et al. [5] showed that when an infinite set of mode shapes
is used, the generalized impulse–momentum balance equations result in a velocity
jump only at the contact area between the colliding bodies, other parts of the
system remaining at rest. In this case, the generalized impulse of the contact force
converges on zero. The transverse impact of a rigid body on a radially rotating
beam was studied. The rigid body was artificially removed from the contact area
after the first balance was applied. Hsu and Shabana [6], and Gau and Shabana
[7], studied the effect of finite rotations on the propagation of impact-induced
transverse and axial elastic waves, respectively. Collisions of a rigid solid on a
radially rotating beam were simulated through the impulse–momentum balance
equations. Again, only a single balance was solved, the impacting rigid body being
removed from the impact zone after the balance. The angular velocity of the beam
was found to result in additional dispersion of elastic waves. Hwang and Shabana
[8] carried out a similar study; however, the rigid body remained stuck to the
rotating beam after colliding. The change in system topology was solved by using
a different set of mode shapes after the impact. Geometrical stiffening of the beam
by effect of the angular velocity was analysed. Yigit and Christoforou [9] compared
the results of transverse impacts of rigid solids on beams using two different
approaches. Simulations of impacts involving a continuous elastic-plastic contact
force were compared with the results of applying the generalized impulse–momen-
tum balance. The beam model used included the effects of shear deformation and
rotary inertia, and mode superposition was used to solve the equations. Unlike
the previous authors, Yigit and Christoforou used Poisson’s rule rather Newton’s
rule to define the coefficient of restitution. However, they concluded that both
approaches led to equivalent results provided an appropriate coefficient of
restitution was used.

The basic assumption in impulsive dynamics is to consider that the period of
contact between colliding bodies is so short that the co-ordinates remain unaltered
during it. In the floating frame of reference approach, the co-ordinates are divided
into reference and flexible co-ordinates. Reference co-ordinates describe the rigid
body motion of the frame of reference attached to the solids while flexible
co-ordinates account for the flexible degrees of freedom used to simulate elastic
deformation in the bodies. The assumption of constant co-ordinates contrasts with
the analysis of impact-induced vibrations, which arise from the elastic motion of
the flexible bodies during the contact period. However, as shown later on, the
equations are still valid because the collision process is solved stepwise (i.e.,
simulating the impact process requires using several balances). The system
configuration changes among balances, thus allowing the flexible co-ordinates to
change as well. The number of times that the generalized impulse–momentum
balance equations need to be solved to conclude the impact process depends on
the number of co-ordinates used to describe flexibility, as well as on the time step
employed. As shown below it increases with increasing number of flexible
co-ordinates and decreases with increasing time step.



D.R. 858834 JSV 217/3 (Issue) MS 2670

   525

The coefficient of restitution, which is included in the formulation to account
for energy losses in the vicinity of the contact area, is difficult to interpret under
these conditions. This is easily understood because continuous contact is simulated
as a virtual succession of instantaneous impacts. At any such impact, the number
and severity of which cannot be controlled in advance, part of the energy is
assumed to be lost locally.

This paper analyses some aspects of the application of the generalized
impulse–momentum balance equations to flexible multibody systems. The floating
frame of reference formulation was used to derive the equations of motion. The
finite element procedure was used to model the flexibility of the bodies. Nodal
co-ordinates were included as flexible co-ordinates. Alternatively, a set of mode
shapes was used to describe impact-induced vibrations in the flexible bodies. This
technique, called component mode synthesis, was used to reduce the number of
co-ordinates.

This paper is organized as follows. The following section illustrates the
development of the generalized impulse–momentum balance equations for flexible
multibody systems using the floating frame of reference approach. Section 3
explains the phenomenon of succession of impacts through the analytical solution
of the axial impact of a rigid body on a flexible fixed-free bar. In section 4, the
analytical solution obtained in section 3 is compared with numerical simulations
involving the generalized impulse–momentum balance equations. Section 5
illustrates the dynamic simulation of the transverse impact of a rigid body on a
radially rotating beam. A summary and conclusions are provided at the end of
the paper.

2. GENERALISED IMPULSE–MOMENTUM BALANCE EQUATIONS

The motion of multibody systems comprising both flexible and rigid bodies can
be analysed by using the floating frame of reference approach. The Lagrange
multipliers technique is used to account for constraints on the co-ordinates, and
the finite element method to describe flexibility. The equations of motion are [10]

Mq̈+Kq+CT
q l=Q,

C(q, t)= 0, (1)

where M and K are the mass and stiffness matrix of the system, respectively. The
vector CT

q l represents the reaction forces associated to the constraints C(q, t), Cq

being the partial derivative of the constraint equations with respect to the system
co-ordinates. The generalized forces Q include the external generalized forces Qe,
the quadratic velocity terms associated to the centrifugal and Coriolis accelerations
Qv and the contact forces Q* (in case of impact). The system co-ordinates are
divided into reference and flexible co-ordinates

q=$qr

qf%. (2)
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Co-ordinates qf are the nodal co-ordinates of the finite element method. If the
component mode synthesis technique is used instead, then a set of shape functions
can be used to represent flexible motion. In this case, qf are called modal
co-ordinates.

By differentiating the constraint equations twice, equation (1) can be written in
matrix form as

$ M
sym

CT
q

0 %$q̇l%=$Q−Kq
Qc % , (3)

where Qc is a vector resulting from the differentiation.
The time interval I=[t1, t2] over which impact occurs, is assumed to be very

short. The reference and flexible co-ordinates are supposed to be constant over it.
Integrating the equations of motion at I, and making I=[t1, t2]:0, yields

MDq̇+CT
q Hl =01lij

1q1
T

H,

CqDq̇= 0, (4)

where Dq̇ are the system velocity jumps, CT
q Hl are the impulsive reactions

associated to the constraints, (1lij /1q)T is the partial derivative of the normal
distance between the nodes in contact during impact with respect to the generalized
co-ordinates, and H is the impulse associated with the contact force. An additional
equation is needed in order to close the system of equations, viz. the restitution
condition, which relates the initial and final relative normal velocities of the
surfaces that come into contact through the coefficient of restitution (Newton’s
rule). In this problem, it is written as

l� ij (t1)=−el� ij (t2)c 01lij
1q1Dq̇=−(1+ e)01lij

1q1q̇(t1), (5)

where e is the coefficient of restitution, a scalar that can take values between zero
and unity. By combining equations (4) and (5), and writing them in matrix form,
the generalized impulse–momentum balance equations are obtained:

M CT
q −01lij

1q1
T

Dq̇ 0

Cq 0 0 Hl = 0 , (6)G
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where

n=−(1+ e)01lij
1q1q̇(t1).

Before the collision, any motion is analysed by using equation (2). When contact
between solids is detected, integration of the equations of motion (2) is stopped.
At that point, the algebraic system of equations (6) is solved to obtain the impulses
associated with the contact and the reactions forces as well as the velocity jumps.
The last are added to the system velocities and integration of the equations of
motion is resumed. Note that the coefficient matrix of equation (6) is equal to the
coefficient matrix of the accelerations in the equation of motion (2) plus an
additional row and column. Therefore, the computational solution of the system
of algebraic equations (6) is straightforward. This is the main reason of the
efficiency and easy development of the generalized impulse–momentum balance
equations in the analysis of impacts in flexible multibody dynamics. However, very
important, not immediately apparent aspects, must be considered in order to apply
properly this impact analysis technique to flexible mechanisms as shown below.

3. AXIAL IMPACT OF A RIGID BODY ON A FIXED-FREE BAR.
SUCCESSION OF IMPACTS

The equation that governs axial vibrations in a beam is the well-known
one-dimensional wave equation. St Venant (Figure 1) solved the axial impact of
a rigid body on a fixed-free bar. The solution can be found in many classical books
[11–13]. Several assumptions are made about this collision, namely:

(1) The impacting mass is considered to be a single-point rigid body.
(2) The flexible body is linear elastic.
(3) The surfaces in contact are planar and contact stress is uniform

throughout.
(4) Friction is neglected.
(5) Lateral inertia due to the Poisson effect is also neglected.

In contrast to impact of compact bodies, where the response is governed by local
deformation, the fixed-free bar problem is an example of fully global response of
bodies (at least for the flexible bar) during the collision [14]. The elastic waves
generated while the bodies are in contact excite the overall geometry of the flexible
bar and are reflected back from the clamped end one or more times before the

Figure 1. Axial impact of a rigid body on a cantilever beam.
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Figure 2. Displacements of rigid body and free-contact section of the beam. Second period of
contact. Analytical solution.

process is over. If the fixed-free bar and the rigid impactor have similar masses,
then the period of contact is of the same order of magnitude as the period
associated with the natural frequency of the flexible body, so use of a quasi-static
approach is ruled out. Understanding requires analysing wave propagation in the
flexible body.

For the particular case of both bodies of identical mass, Escalona et al. [15]
provided analytical evidence for the phenomenon of succession of impacts. After
coming into contact, the impacted surfaces can depart and contact each other
again several times before the collision is over. This effect, which is very frequent
in transverse impacts on shells, plates and beams, can substantially affect the
impact process [16].

Figure 3. Contact stress. Second period of contact. Analytical solution.
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Figures 2 and 3 show the contact stresses and common displacements in the rigid
body and the bar contact surface, respectively. As can be seen the collision in the
second period of contact is much weaker than in the first. Selected parameter
values for this process are as follows:

Initial velocity of the rigid body: n0

Initial contact stress: n0(Er)1/2

Maximum contact stress: 2·135 n0(Er)1/2 at t=T
Duration of the first period of contact: 1·534T
Final velocity of the rigid body after the first period of contact: −0·688 n0

Time interval between first and second period of contact: 0·594T
Initial and maximum contact stress in second period of contact: 0·274 n0(Er)1/2

Duration of the second period of contact: 0·035T
Final velocity of the rigid body after the second period of contact: −0·692 n0

where E is the modulus of elasticity of the flexible bar, r the material density of
the bar, T=2L(r/E)1/2 the time taken by the elastic waves to travel the length of
the bar twice, and L the length of the bar.

As can be inferred from this solution, the second period of contact starts after
the rigid body changes the initial direction of its motion. The free section of the
beam is accelerated until it collides with the rigid body again. The occurrence of
additional contacts may increase the amount of energy lost by virtue of the rigid
body motion of the bodies. This is always so judging by the amount of energy lost
in local plasticity or friction. However, local effects are not considered in this
example. Part of the energy lost through rigid body motion in the first period of
contact is recovered in the second one.

4. AXIAL IMPACT OF A RIGID BODY ON A FIXED-FREE BAR.
NUMERICAL SIMULATIONS

The problem discussed in the previous section was solved numerically by using
the finite element technique to model flexibility in the bar and the generalized
impulse–momentum balance equations to solve the collision problem. In order to
determine its ability to describe the impact problem, a set of eigenvectors was used
as shape functions in the dynamic simulation. In the case of a fixed-free bar, where
the flexible body is a structure rather than a mechanism, the method should be
called mode superposition and not be confused with component mode synthesis.
In this case, the shape functions are eigenvectors of its equation of motion, not
only admissible shape functions. The solution obtained by using modal
co-ordinates is compared with that provided by nodal co-ordinates and both are
contrasted with the analytical results.

4.1.      

The first question that arises in simulating this problem is what coefficient of
restitution should be used in the system of algebraic equations. At this point, it
is important to note that this selection, needed for correct simulation of the motion
using the system of equations (6), is not obvious.
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In solving the analytical problem in section 3, it was assumed that the rigid body
and the free section of the beam abruptly acquire the same velocity at the
beginning of the contact, which of course is physically possible. Because velocity
jumps occur as soon as contact starts, a zero relative normal velocity will result
in a zero coefficient of restitution. However, using this coefficient does not
necessarily mean that any energy is lost as in a rigid body impact. The reason is
that the free section has no mass so it abruptly acquires the same velocity as the
rigid body without altering the velocity of the rigid body at that instant. However,
the system is discretised by assigning a finite mass to the node associated to the
free section of the beam. Hence, the use of a zero coefficient would lead to some
energy loss at the beginning of the contact. In order to use this approach, one can
modify the system configuration during the contact period and model it as one
solid in the composite body of a cantilever beam with the mass attached to its end.
With this procedure, the simulation would be much more accurate but also more
complex.

As in rigid body collisions, the coefficient of restitution can be taken to be the
ratio of the initial to the final relative normal rigid body velocities of the solids
involved (Newton’s rule). From the analytical solution obtained the coefficient
turns out to be 0·692. In this case, the coefficient of restitution would characterise
the energy lost by the rigid body motion and used in internal vibrations of the
flexible beam. However, this number cannot be known in advance because it is
one of the solution outputs.

The coefficient to be included in the generalised impulse–momentum balance
equations must only characterize the energy lost in local effects such as plasticity
because the internal vibrations cannot be assumed to appear instantaneously. In
fact, internal vibrations arise from velocity jumps in the flexible co-ordinates,
which are obtained from the generalized impulse–momentum balance equations.

Since the local energy lost is neglected a unity coefficient of restitution should
be used. Note that, in this case, the rigid body and the free section of the beam
will separate instantaneously, and the continuous period of contact is not
simulated. As shown in the following sections, the first solution to the
momentum–balance equations will not change the direction of motion of the rigid
body. This is so because the mass associated to the node in the free section of the
bar is much smaller than the rigid body mass. Hence, a new contact will arise
during the integration.

4.2.  

The impact problem was solved numerically by using the finite element
procedure. The bar was split into evenly spaced truss elements that possessed axial
degrees of freedom only. The Newmark method was used as integration scheme,
with d=0·5 and a=0·25 [17]. When mode superposition was adopted, the
eigenvectors of the fixed-free bar were used as global shape functions to describe
deformation in the bar.

In the numerical simulation, the bar was assumed to consist of steel with a
Young’s modulus E=2·1e11 N/m2, material density r=7·9e3 kg/m3, length
L=0·3 m, and cross-sectional area A=9e-4 m2. Also, the concentrated mass was
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T 1

Solution of the generalized impulse–momentum balance equations for the axial
impact on a cantilever beam

Rigid body Free-contact node Interior node 1 Interior node 2

Initial velocity (m/s) 1 0 0 0
Velocity jump (m/s) −0·175 1·825 −0·487 0·122
Final velocity (m/s) 0·825 1·825 −0·487 0·122

assumed to be identical to that of the bar, m=2·133 kg, and its initial velocity
to be n0 =1 m/s.

4.3.      –  

In order to understand what is obtained in the numerical simulations, the first
solution of the generalized impulse–momentum balance equations (6) for a unity
coefficient of restitution is given in Table 1. In this simple case, the bar was split
into three elements. Because the clamped end was modelled by eliminating the
degree of freedom associated with it, in the system of algebraic equations (6) there
were no constraints, so the equations were simplified. The rows in Table 1 show
the initial velocity, velocity jumps and final velocity of all the nodal co-ordinates
involved in the analysis.

Figure 4. Displacements. 20 Nodes. ——, Free section, numerical result; – – –, free section,
analytical result; ——, concentrated mass, numerical result.
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Figure 5. Displacements. 20 Modes. ——, Free section, numerical result; – – –, free section,
analytical result; — —, concentrated mass, numerical result.

As can be seen, after the impulse–momentum balance is solved, the rigid body
continues to move in the same direction, so, after a few time step intervals it will
come into contact with the node associated with the free section again, and new
momentum balance will have to be solved then. It is important to emphasize that
this succession of balances does not mean a succession of impacts, as shown in

Figure 6. Contact stress from the analytical solution and impulsive forces from the numerical
solution (20 modes).
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T 2

Influence of the number of flexible co-ordinates

Duration of impact Final velocity
Number of nodes (×10−4 s) (m/s) Number of balances

5 1·56 −0·702 12
10 1·78 −0·715 30
20 (1·82) 2·54 (−0·687) −0·695 63

Exact solution (1·78) 2·52 (−0·688) −0·692

T 3

Influence of the coefficient of restitution. Simulations with 20 mode shapes from 100
finite elements

Final velocity
Duration of impact after 2nd period

e (×10−4 s) (m/s) Number of balances

1 (1·71) 2·49 −0·712 49
0·7 (1·80) 2·46 −0·741 296
0·3 (1·86) 2·47 −0·712 338
0 (1·94) 2·46 −0·615 352

Exact solution (1·78) 2·52 −0·692

T 4

Influence of the time step. Coefficient of restitution e=0. Simulations
with 30 elements

Duration of impact
Time step (two periods) Final velocity Energy loss

(s) (×10−4 s) (m/s) Number of balances (% of initial energy)

5·89e-7 2·47 −0·42 400 74%
2·95e-7 2·48 −0·58 731 52%
9·82e-8 2·51 −0·75 1954 24%
5·89e-8 2·51 −0·73 3117 16%

discussing the numerical results. The number of balances needed depends on the
way the flexible bodies are discretized rather than on the properties of the real
body.

Not only the node associated to the free section is dynamically excited after this
first balance, as one would expect from the fact that wave propagation starts at
this point. However, a larger velocity jump is observed when the node is closer
to the contact section.

It has been shown [5] that, the larger the number of flexible co-ordinates used
to model a flexible body the smaller is the impulse associated with the contact
force, and the closer to the contact zone is the area affected by the velocity jump.
This is reasonable because increasing the number of flexible co-ordinates decreases
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T 5

Influence of the time step. Coefficient of restitution e=0·3. Simulations
with 30 elements

Duration of impact
Time step (two periods) Final velocity Energy loss

(s) (×10−4 s) (m/s) Number of balances (% of initial energy)

5·89e-7 2·47 −0·57 365 54%
2·95e-7 2·48 −0·69 680 34%
9·82e-8 2·51 −0·73 1849 14%
5·89e-8 2·51 −0·72 2907 9%

the mass associated with each degree of freedom (the contact section included).
This results in more balances being needed to simulate the complete process and
in expectably less severe impacts as the flexible degrees of freedom of the elastic
bodies are increased. Here, the severity of the simulated impacts is assimilated to
the magnitude of the initial normal relative velocities.

When mode superposition is adopted, if a complete set of eigenvectors is
included, then the solution is exactly the same as with nodal co-ordinates and the

Figure 7. Impact of a rigid body on a radially rotating beam.

T 6

Impulse–momentum balances for the impact on a radially rotating beam

Final Averaged
No. of velocity Period of No. of velocity SMci SPci

modes (m/s) balances (s) balances jump (m/s) (kg m2/s) (kg m/s)

5 1·874 Dt=1·53e-2 15 0·129 8·43e-3 2·78e-1
10 1·786 Dt=1·32e-2 34 0·054 1·17e-2 1·68e-1
15 1·736 Dt=1·31e-2 51 0·035 2·2e-3 1·09e-1

Rigid solids 1·943 Dt=0 1 2 0·342 2·276
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Figure 8. Impact on a radially rotating beam. 10 Modes. ——, Free section; ——, concentrated
mass.

equations are equivalent. A different result will be obtained, however, if an
incomplete set of eigenvectors is used.

4.4.   

The impact logic, i.e., the conditions to be satisfied in order to assume that a
new balance must be solved, is described below. A new balance will be solved if
both the following conditions, 1 and 2, are satisfied:

(1) penetration: um − uf e 0, and
(2) relative velocities: nm − vf e 0

where um and nm are the displacement and velocity of the rigid body; and uf and
nf are those of the free-contact section of the bar. Our frame of reference is located
at the initial position of the rigid body and the positive direction of the x-axis runs
towards the clamped end of the bar (Figure 1).

Condition 1 implies that there should be numerical penetration of the bodies.
If the degree of penetration found is unacceptably high, then one can use a small
number as a tolerated limit to this penetration. If the penetration exceeds the
tolerated limit, then the simulation procedure returns to the last integration step
and it resumes integration using a smaller time step. However, because the event
described occurs over a very short period and the time step used in the simulations
is thus very small, the penetration should not be unacceptable. Condition 2 relates
the relative velocities. It is satisfied if the rigid body and the free-contact surface
are still approaching each other.
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4.5.            - 

Consistency between the analytical solution obtained in section 3 and the
numerical simulation with e=1 was in general very good. Figure 4 compares the
displacement of the rigid body and the free-contact section of the fixed-free bar
as derived analytically and numerically. The numerical problem was solved by
using 20 nodes. No second period of contact was detected by this numerical
simulation. Because of the low intensity of this impact, the general solution was
not substantially modified. Figure 5 shows a similar comparison where the
numerical solution was calculated from 20 modal co-ordinates obtained from 100
finite elements. The second period of contact was indeed detected in this case.
Therefore, on equal numbers of flexible co-ordinates, the modal approach gives
better results. However, modal matrices are quite large and thus use greater
amounts of memory and longer CPU times. Using complete sets of eigenvectors
led to similar solutions with nodal and modal co-ordinates. However, the modal
problem involves more computations to change the co-ordinates.

The generalised impulse–momentum balance equations do not provide the
contact forces, but rather the impulses associated to them. Figure 6 shows the
analytically obtained contact stress versus the impulses obtained from the
balances, divided by the time step. Although they cannot be interpreted to be
forces, one can readily see that the intensity of this unreal succession of impacts
is related to the instantaneous contact stress of the analytical solution.

Figure 9. Impact on a radially rotating beam. 15 Modes. ——, Free section; — —, concentrated
mass.
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Figure 10. Impact on a radially rotating beam. Elastic displacement of the tip of the beam. 10
Modes.

The number of balances to be solved in order to simulate the complete process
depends on the number of flexible degrees of freedom involved. The larger the
number of flexible co-ordinates used the smaller will be the mass associated to the
node of the free contact surface and hence, the velocity jumps of the free body.
More balances will thus have to be solved as the number of flexible (nodal or
modal) co-ordinates is increased. This is apparent from Table 2, which gives the
number of balances, duration of impact and final velocity for different numbers
of flexible degrees of freedom. The duration of impact is approximated by the time
interval between the solution for the first and last balances. In cases where a second
period of contact was found, the duration of the first and the velocity of the
impactor after it are given in brackets.

As explained in section 4·1 a unity coefficient of restitution should be used.
However, Table 3 gives the results for several problems that were solved with
variable coefficients of restitution smaller than unity in order to analyse its effect.
From the results it follows that the number of balances increases as the coefficient
of restitution decreases. This is so because the velocity at which contacting nodes
separate after any balance decreases as the coefficient decreases, so the nodes can
come into new contact faster. One surprising result is that decreased values of the
coefficient can result in an increased final velocity of the rigid body. This could
never happen in rigid body dynamics. Clearly, the system loses some energy after
each balance. If the rigid body has a greater final velocity than in a completely
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elastic impact, then all the energy lost will be the energy invested in elastic
vibration during the elastic impact. In contrast to the Newtonian concept of the
coefficient of restitution in rigid body collisions, the final kinetic energy of the rigid
body in the simulation with e=0·7 was greater than that in the simulation with
e=1, even though in the first simulation the system lost some energy.

Note that, in rigid body dynamics, a zero coefficient of restitution means that
the colliding bodies acquire zero relative velocity after the impact. However, when
flexible co-ordinates are included, the coefficient means that at once the nodes
associated with the contact surfaces acquire the same normal velocity. As soon as
elastic forces arise at the node of the free-contact section (not the impactor), it
changes its velocity so the nodes can separate and collide again.

Table 4 shows the influence of the time step used to integrate the equations of
motion on the impact with a zero coefficient of restitution. From it, one can
conclude that a small time step leads to a large number of balances and hence to
a high final velocity in the rigid body. This can only be accounted for if the
averaged relative velocity of the impacting nodes is much smaller in the balances
solved by using smaller time steps. In any case, the influence of the time step is
extremely important and its variation results in completely different results. A
similar effect is observed when a non-unity coefficient of restitution is used. Table
5 shows the same types of data as Table 4 but obtained with a coefficient of
restitution e=0·3. As can be seen, the time step is less influential here than in the

Figure 11. Impact on a radially rotating beam. Elastic displacement of the tip of the beam. 15
Modes.
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Figure 12. Impact on a radially rotating beam. Vertical reaction at revolute joint. 10 Modes.

simulations with e=0. In general, the differences between the simulations as the
time step increases are more important as the coefficient of restitution decreases.

In summary the process simulated by this succession of balances is unrealistic.
Clearly, the coefficient of restitution lacks physical significance in this formulation.
Consistent results are only guaranteed when the coefficient of restitution is unity
(i.e., when no energy is lost). The coefficient of restitution included in the
formulation of the generalized impulse–momentum balance equations cannot
uniquely characterize the locally lost energy because one cannot control the
number of balances needed to conclude the collision or their intensity.

The coefficient of restitution used in all balances of the previous simulations was
constant. Some authors [9] use a velocity-dependent coefficient of restitution. The
coefficient value is the same as the one that would be obtained for the impact of
the rigid impactor with a half-space. Some contact force-indentation law must be
adopted to this end. Whether this assimilation is valid is not clear. The previous
analysis demonstrates that a balance means neither an impact nor a period of
contact. Moreover, the contact section of the flexible body, the mass of which
approaches zero as the number of flexible degrees of freedom approaches to
infinity, is substituted in this equivalence by an infinite mass (the half-space). Since
the separations of the impacting bodies between the balances are physically unreal,
it makes no sense to try to find a criterion for using a velocity-dependent coefficient
of restitution. This is why a constant coefficient of restitution was used in the
previous analysis. Anyway, from results not shown in this paper, the same
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conclusions given above are applicable when a velocity-dependent coefficient of
restitution is used.

5. IMPACT OF RIGID BODIES ON FLEXIBLE MECHANISMS

This section discusses the numerical simulations of the impact of rigid bodies
in flexible mechanisms. In this case, the full system of equations (6) was used
(reference co-ordinates and kinematic constraints included). The system was a
radially rotating flexible beam that impacted transversally on its free tip (Figure
7). The floating frame of reference approach was used to derive the equations of
motion for the flexible mechanism. The Lagrange multipliers associated to the
constraint equations were included in the equations of motion to account for the
reaction forces. Also component mode synthesis was used to reduce the number
of flexible co-ordinates. The equations of motion were integrated by using a
variable time step integrator. Simulations were carried out using the
general-purpose computer program DAMS [18].

5.1.   

The conditions for impact detection must be modified to simulate transverse
impacts on beams. In order to allow the flexible co-ordinates to change after each
balance, the program integrates a number of time steps after the balance without
considering the possibility of a new contact. This is called the ‘‘number of calls

Figure 13. Impact on a radially rotating beam. Vertical reaction at revolute joint. 15 Modes.
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after impact’’. A small penetration of the solids can occur during this period. Since
the beam is modelled as a single line, the rigid body can cross the beam unless
the impact logic prevents it.

The algorithm for detecting impacts uses the normal relative distance and
velocities of the impacting nodes as variables. They are calculated as follows: the
relative normal distance dn, and normal velocities of the impacting points, vn, are
computed from the relative distance d, and velocity v, and the vector normal to
the surface of the flexible beams n. This normal vector is obtained by adding the
angle rotated by the frame of reference attached to the flexible beam ur to the angle
rotated by the node associated to the impacting surface of the beam uf

u= ur + uf, n=[−sin u cos u]. (7)

Thus, the relative normal distance and velocity are obtained from

dn =(d · n)n, vn =(v · n)n. (8)

During the computation process, if no balance has yet been solved, an impact
is assumed to occur if the relative normal distance between the impacting points
is smaller than a low tolerance

=dn=Q tol. (9)

At this point, the relative normal velocity vn0 and distance dn0 of the previous time
step is stored. In this way, the program stores the initial relative direction of the
impact. Obviously, the bodies must eventually separate in opposite relative
directions. Additional balances must be solved if both of the following conditions
are satisfied:

(1) The actual relative velocity has the same direction as the initial one

vn · vn0 q 0. (10)

(2) The actual relative normal distance has the opposite direction of the initial
one

dn · dn0 Q 0. (11)

The first condition implies that the surfaces are still approaching and the second
one that there is numerical penetration (i.e., contact).

5.2.           

In this simulation, a flexible beam was supposed to rotate at a constant angular
velocity when impacted by a rigid body on its free tip (Figure 7). The following
parameters were considered:

Constant angular velocity: 3·142 rad/s
Rigid body initial velocity: −0·0574 m/s
Relative impact velocity: 1 m/s
Beam mass: 1·138 kg
Rigid body mass: 1·138 kg.
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The flexible beam was assumed to consist of steel and to have a rectangular
cross section with the following properties:

Young’s modulus: 2·1e11 N/m2

Length: 0·3 m
Cross section: 6 cm×0·8 cm.

The beam was split into 15 finite beam elements. Three different models were
tested that used 15, 10 and 5 mode shapes to simulate the beam flexibility. Mode
shapes were obtained by attaching the body frame of reference rigidly to the
revolute joint of the rotating beam. Three, out of the 15 modes used in the
simulations were axial modes (viz. the 6th, 10th and 13th). Since the response
would be mainly flexural, these three modes had no effect on it. Thus, in practice,
it was like using 12, 9 and 5 modes, respectively. All simulations were done with
a unity coefficient of restitution.

The results of the generalized impulse–momentum balance equations can be
verified by performing some simple calculations. Thus, the rigid body solution for
this problem can be obtained from the following system of algebraic equations:

Momentum balance: mn− +P=mn+,

Linear momentum balance: mn−L−M=mn+L,

Energy balance: 1
2mn−2 +Mv0 = 1

2mn+2, (12)

where m is the rigid body mass; L is the length of the beam; n− and n+ are the
initial and final rigid body velocity, respectively; P is the vertical impulsive reaction
at the revolute joint; and M is the torque impulsive reaction at the revolute joint
needed to maintain its angular velocity constant. Note that because of the constant
angular velocity constraint the kinetic conditions of the beam are the same before
and after the impact. The third equation above can be substituted by the
restitution condition, i.e. one that considers the initial and final relative normal
velocities of the impacting points to be identical (with opposite signs). The solution
of the system of algebraic equations (12) is

n+ =1·943 m/s, M=0·683 kg m2/s, P=2·276 kg m/s. (13)

Table 6 shows the final rigid body velocity, period of contact (computed as in the
simulation of the fixed-free bar), number of balances solved, averaged velocity
jump of the rigid body at each balance, and addition of all the impulsive vertical
reaction and impulsive torques. The impulses of the reactions at the revolute joint
are reduced to the centre of gravity of the beam. These results are given for the
three models and compared with the solution of the problem involving rigid
bodies. From them, it can be concluded that the more modes are used the smaller
is the final velocity of the rigid mass. Increasing the number of flexible degrees of
freedom increases the flexibility of the modelled body. The additional mode shapes
increase the capacity of the flexible body to store energy in the form of internal
vibrations. This energy is taken from the rigid body kinetic energy. The final
velocity of the rigid body obtained from the rigid solid solution can be regarded
as an upper limit of the final velocity of the rigid body in the flexible body
simulation.
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Based on the results of the balances, an increasing number of modes increases
the number of balances and decreases the velocity jumps and impulsive reactions.
The simulated ‘‘periods of contact’’ obtained with different models are highly
consistent.

Figures 8 and 9 show the global displacement of the rigid body and the
free-contact tip of the flexible beam, from the 10-mode and 15-mode solutions,
respectively. Figures 10 and 11 show the displacement of the tip of the beam with
respect to its body-fixed frame of reference, again with 10 and 15 modes
respectively. As can be seen the solution converges as the number of modes is
increased. Although the period of contact was simulated in a discrete succession
of balances, the results are seemingly consistent with a continuous process.
However, based on the forces associated to the impact process, increasing the
number of modes, does not lead to consistent results. Figures 12 and 13 show the
reaction at the revolute joint of the simulations with 10 and 15 mode shapes. As
can be seen, the magnitude of the reactions is much greater in the solution
provided by 15 mode shapes than in that obtained with 10 mode shapes.

6. SUMMARY AND CONCLUSIONS

In this work, the generalized impulse–momentum balance equations were used
to simulate the impacts of rigid bodies on flexible beams of structures and
mechanisms. The system of algebraic equations is the result of applying impulsive
dynamics to flexible multibody systems, using the floating frame of reference
approach. The coefficient of restitution is included in the formulation to account
for the energy lost in the vicinity of the contact area. Friction is not considered.
The flexible co-ordinates used to describe elastic displacements in the impacted
beams can be the nodal co-ordinates of the finite element method or, alternatively,
a set of eigenvectors numerically obtained from the finite element discretization.

From the analysis performed, the following conclusions can be drawn:
(1) The simulations show that, when a rigid body impacts a flexible beam,

the equations of impulse–momentum balance have to be solved many
times before the collision is concluded. As shown in this paper, this
numerical procedure is unrelated with the real phenomenon of succession
of impacts, which occurs in the impact of flexible bodies when the collision
involves several periods of contact between the surfaces. The reason for
these many balances during the collision is that the rigid body, with a
mass of the same order of magnitude as the flexible body, collides directly
on the node at the contact section. However, the mass associated to this
contact section is much smaller than that of the whole flexible beam.

(2) The number of balances increases as the number of flexible degrees of
freedom does, at the expense of a decreased intensity in instantaneous
impacts. This is a consequence of the mass associated to the contact
section being reduced when the geometric discretisation is refined.

(3) As a result of this succession of balances, the coefficient of restitution
loses its physical significance because there can never be as many real
contact periods as balances solved. Hence, the numerically simulated
phenomenon lacks physical interpretation.
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(4) Numerically, using a coefficient of restitution smaller than one can lead
to final relative velocities for the impacted bodies even higher than the
relative velocities obtained with a unity coefficient of restitution.
Moreover, integrations do not give consistent results with coefficients
smaller than one, they exhibit a strong dependence on the time step.
Satisfactory results are obtained with a unity coefficient of restitution.

(5) In addition, simulations for axial impacts are highly consistent with the
analytical results for a unity coefficient of restitution. Convergence of the
displacements due to the impact process in both axial and transverse
impacts as the number of flexible co-ordinates is increased is excellent.
However, the forces associated to the transverse impacts on rotating
beams are not accurately obtained.

The analysis presented in this paper is concerned with impacts in which the rigid
impactor has the same mass as the flexible body. The conclusions can be extended
to impacts between rigid and flexible slender bodies with masses of the same order
of magnitude at moderate impact velocities. However, it is important to note that
the generalized impulse–momentum balance equations involving the coefficient of
restitution can give accurate results when the mass of the impactor is much smaller
than that of the flexible body. In this case, the impact can be solved in a single
balance and the coefficient of restitution can be used to characterize the local
energy loss.
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